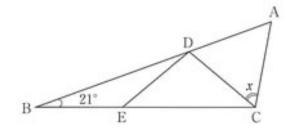
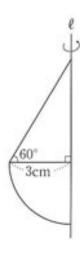
令和 2 年度 開智高校 (和歌山)


【注意】答えはすべて解答用紙に書きなさい。

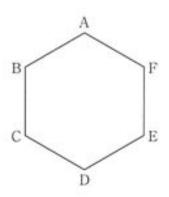
- I 次の各問いに答えなさい。
 - (1) $\frac{2}{3} + \left(\frac{1}{2} \frac{1}{3}\right)^2 \times 12$ を計算しなさい。
 - (2) $(\sqrt{3}-1)^2 + \frac{6}{\sqrt{3}}$ を計算しなさい。
 - (3) $x = 1 + \sqrt{2}$ のとき、 $(x-2)^2 + 2(x-2) 1$ の値を求めなさい。


- (4) 2(x+1)2-10(x+1)-12 を因数分解しなさい。
- (5) 連立方程式 $\begin{cases} \frac{x}{2} + \frac{y}{3} = 1 \\ 0.25x + 0.125y = 1 \end{cases}$ を解きなさい。
- (6) 曲線 $y = \frac{3}{x}$ と直線y = x + 2の交点のうち、x座標が小さい方の交点の座標を求めなさい。

(7) 関数 $y = 2x^2$ について、xの変域が $-1 \le x < 2$ のとき、yの変域を求めなさい。


(8) 右の図において、地点 A から地点 B まで移動するとき、最短の道順は何通りあるか、答えなさい。

(9) 右の図において、AC = CD = DE = BEのとき、 $\angle x$ の大きさを求めなさい。



(10) 右の図のように、直角三角形と、中心角が90°のおうぎ形 を組み合わせた図形がある。この図形を、直線 ℓ を軸にして 1回転したときにできる立体の体積を求めなさい。ただし、 円周率はπとする。

Ⅱ 次の各間いに答えなさい。

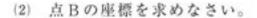
- (1) 右の図のような正六角形 ABCDEF がある。点 P は、 最初、頂点 A にあり、1 個のさいころを1 回投げるごと に、出た目の数だけ頂点上を反時計回りに移動する。さ いころを2 回投げるとき、次の確率を求めなさい。
 - さいころを2回投げた後、点Pが1周目で頂点Cに 止まる確率。

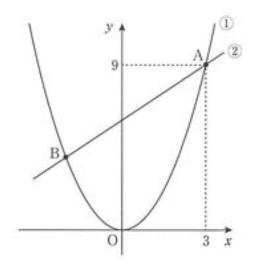
② 点Pが1周目で頂点Cに止まることなく、2周目で頂点Cに止まる確率。

(2) 下の度数分布表は20人の生徒に行われた数学と英語のテストの結果である。度数分布表を利用して、下の各間いに答えなさい。

数学テスト

得点(点)	人数 (人)		
0以上10未満	1		
10 ~ 20	7		
20 ~ 30	5		
30 ~ 40	5		
40 ~ 50	2		
計	20		

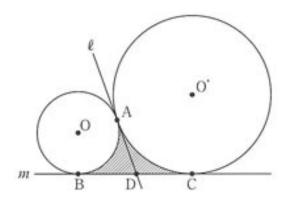

英語テスト


7CH1 /			
得点(点)	人数 (人)		
0 以上 10 未満	2		
10 ~ 20	3		
20 ~ 30	7		
30 ~ 40	5		
40 ~ 50	3		
81	20		

① 数学の平均点を求めなさい。

- ② 表から分かることについて、次のアーオからすべて選び、記号で答えなさい。
 - ア 平均点は英語の方が高い。
 - イ 最頻値は数学の方が高い。
 - ウ 中央値は英語の方が高い。
 - エ 最高点は数学の方が高い。
 - オ 20 点以上の生徒は、英語の方が多い。

- III 図のように、放物線 $y = ax^2$ …①と直線y = x + 6 …②との交点をA、Bとし、点Aの座標を(3.9)とする。このとき、次の各間いに答えなさい。
 - (1) αの値を求めなさい。

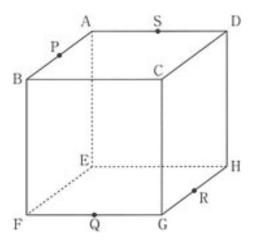


(3) △OABの面積を求めなさい。

- (4) 直線x = tと線分 AB, OA の交点をそれぞれ P, Qとする。
 - ① 点Qのy座標をtを用いて表しなさい。

② △APQの面積が△OABの面積の半分になるとき、tの値を求めなさい。

- IV 図のように、2つの円 O. O'があり、直線 ℓ は点 A で 2 つの円に接している。また、直線 m は点 B. C でそれぞれ円 O. O'と接し、 ℓ と m は点 D で交わっている。 OO' = 12 cm. BC = $6\sqrt{3}$ cm とするとき、次の各間いに答えなさい。ただし、円周率は π とする。
 - (1) 円〇の半径を求めなさい。



(2) 線分 AD の長さを求めなさい。

(3) ∠AOBの大きさを求めなさい。

(4) 2つの円〇、〇と直線πで囲まれた斜線部分の面積を求めなさい。

- V 図のように、1辺2cmの立方体ABCD-EFGHがあり、辺AB、FG、GH、DAの中点をそれぞれP、Q、R、Sとする。このとき、次の各問いに答えなさい。
 - (1) 線分 AG の長さを求めなさい。

(2) 点 P から辺 BF 上の 1 点を通って点 Q まで線を引いたとき、その最短の長さを求めなさい。

(3) この立方体を点 P. Q. R. Sを通る平面で切断するとき、切断面の形を答えなさい。

(4) (3)で求めた切断面の面積を求めなさい。

	(1)	1	(2)			4		(3)			0		
т	(4)	2(x+2)(x-5)	(5)	<i>x</i> =	10	, y=	-12	(6)	(- 3	,	- 1)
1	(7)	0 ≤ y < 8	(8)			10	通り	(9)			54		度
	(10)	$9\sqrt{3}\pi + 18\pi$ cm ³											

п	(1)	①	$\frac{1}{36}$		2	1 9
ш	(2)	0	25	点	2	ア , オ

m	(1)	a =	1	(2)	B (-2	,	4)	(3)	15
ш	(4)	0	3t	2	t =		6-	√ <u>30</u> 2			

137	(1)	3	cm	(2)	3√3	cm
IV	(3)	120	度	(4)	$36\sqrt{3} - \frac{33}{2}\pi$	cm²

V	(1)	2√3	cm	(2)	2√2	cm
V	(3)	正六角形		(4)	3√3	cm ²

採 点