数 学

1 問題は \square から \square までで，8ページにわたって印刷されています。 また，解答用紙は両面に印刷してあります。

2 考査時間は 50 分で，終了時刻は午前 11 時 10 分です。
3 声を出して読んではいけません。
4 解答は全て解答用紙に H B 势はBの鉛簐（シャープペンシルも可）を使って明確に記入し，解答用紙だけを提出しなさい。
5 答えに根号が荅まれるときは，根号を付けたまま，分母に根号を含まない形で表しなさい。また，根号の中を最も小さい自然数にしなさい。
6 答えは解答用紙の決められた籣からはみ出さないように軎きなさい。
7 解答を直すときは，きれいに消してから，消しくずを残さないようにして，新じい答えを書きなさい。

8 受検番号を解答用紙の表面と皐面の決められた橌に書き，表面については， その数字の \bigcirc の中を正確に荼りつぶしなさい。

9 解答用紙は，汚したり，折り曲げたりしてはいけません。
10 この問題冊子は，どのページも切り離してはいけません。

1 次の各問に答えよ。

〔問 1〕 $\frac{5\left\{(\sqrt{8}+\sqrt{3})^{2}-(\sqrt{8}-\sqrt{3})^{2}\right\}}{3 \sqrt{3}} \div 7 \sqrt{8}$ を計算せよ。

〔問 2〕 二次方程式 $(x+3)(2 x-1)+3(1-2 x)=0$ を解け。

〔問3〕2，4，6の数字が 1 つずつ書かれた 3 枚のカード 2 ，4，6 6 が入っている箱 A と， 1，3， 5 の数字が 1 つずつ書かれた 3 枚のカード 1 ， 3 ，5 が入っている箱 B がある。箱A，箱B から同時にそれぞれ1枚のカードを取り出す。
箱Aから取り出したカードの数字を十の位の数，箱 B から取り出したカードの数字 を一の位の数とする 2 箖の正の整数を N とするとき，N の正の約数の個数が 3 個に なる確率を求めよ。
ただし，箱A，箱 B それぞれにおいて，どのカードが取り出されることも同様に確からしいものとする。

〔問4〕下の表は，A，B，C，D，E，Fの6人の生徒が，それぞれ 10 個の球をかごに投げ入れる球入れをしたときの，かごに入った球の個数と，その平均値及び中央値 をまとめたものである。

生徒 A が投げてかごに入った球の個数を a 個，生徒 E が投げてかごに入った球の個数を b 個とするとき，a, b の値の組（ a, b ）は何通りあるか。

ただし，a, b は正の整数とし，$a<b$ とする。

	A	B	C	D	E	F	平均値（個）	中央値（個）
個数（個）	a	5	9	10	b	3	7.0	7.5

〔問5〕右の図で， 3 点 A，B，Cは円Oの周上にあり，$\triangle \mathrm{ABC}$ は正三角形である。
解筌答棆に示した図をもとにして，頂点の1つを点 A とし， 3 つの頂点が全て円 O の周上にある正三角形を定規とコンパスを用いて作図せよ。
ただし，作図に用いた線は消さないでおくこと。

2 右の図 1 で，点 O は原点，曲線 f は関数 $y=x^{2}$ のグラフ を表している。

2 点A．B はともに曲線 f 上にあり，点 A の x 座標は $a(a>0)$ ，点 B の x 座標は負の数であり，点 A と点 B の y 座標は等しい。

点 O から点（ 1,0 ）までの犃離，および点（ 0,1 ）までの距離をそれぞれ 1 cm として，次の各問に答えよ。

〔問1〕右の図2は，図1において，点Bを通り傾きが1 の直線を ℓ とし，直線 ℓ と曲線 f との交点のうち，点 B と異なる点を P とした場合を表している。点 P の x 座標が 3 のとき，点 A の x 座標 a の値 を求めよ。

図 1

図2

〔問2〕右の図3は，図1において，y軸上にあり，y座標 が 0 以上の数である点を C とし，点 A と点 B を結 んだ場合を表している。
次の（1），（2）に答えよ。

図3

（1）点 A と点 C ，点 B と点 C をそれぞれ結んた場合を考える。 $\angle \mathrm{ACB}=90^{\circ}$ ， $\triangle \mathrm{ABC}$ の面積が $1 \mathrm{~cm}^{2}$ となるときの点 C の座標を全て求めよ。
（2）右の図4は，図3において，x 軸上にある点を D とし，点 A と点 D ，点 B と点 C ，点 C と点 D をそれぞれ結び，線分 AB と線分 CD との交点 を Q とした場合を表している。
$a=3$ ，点 C の y 座標が 12 で，$\triangle \mathrm{ADQ}$ の面積 と $\triangle \mathrm{BCQ}$ の面積か等しいとき，点 D の座標を求めよ。

ただし，答えだけでなく，答えを求める過程 が分かるように，途中の式や計算なども書け。

図4

3 右の図 1 において，$\triangle \mathrm{ABC}$ は鋭角三角形であり，点 O は $\triangle \mathrm{ABC}$ の 3 つの頂点 A ． B ，C を通る円の中心である。 $\angle \mathrm{A}$ の二等分線と円 O との交点のうち，頂点 A と異なる点 を P とする。次の各問に答えよ。

〔問1〕右の図2は，図1において，線分 AP と線分 BCとの交点を D とし，頂点 B と点 P を結んだ場合を表して いる。
$\mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}, \mathrm{BD}=3 \mathrm{~cm}, \mathrm{BP}=4 \mathrm{~cm}$ であるとき，線分 DP の長さは何 cm か。

図 1

図2

〔問2〕右の図3は，図1において，$\angle \mathrm{B}$ の二等分線と円Oと の交点のうち，頂点 B と異なる点を Q とした場合を表 している。
ただし，$\angle \mathrm{A}$ の二等分線と $\angle \mathrm{B}$ の二等分線は，円の中心 0 では交わらないものとする。

次の（1），（2）に答えよ。

図 3

（1）図3において，頂点 A を合む BQ_{B} に対する円周角の大きさと，頂点 B を含む $\overparen{\mathrm{AP}}$ に対する円周角の大きさが等しくなるとき，$\triangle \mathrm{ABC}$ はどのような三角形にな るか答えよ。
ただし，答えだけでなく，答えを求める過程が分かるように，途中の式や計算 なども書け。
（2）図3において，頂点 A を含む $\overparen{\mathrm{BQ}}$ に対する円周角の大きさと，頂点 C を含む $\overparen{A P}$ に対する円周角の大きさか等しくなるとき，$\angle \mathrm{ACB}$ の大きさは何度か。

4 右の図で，立体 $\mathrm{ABCD}-\mathrm{EFGH}$ は， $\mathrm{AB}=4 \mathrm{~cm}$ ，
$\mathrm{AD}=8 \mathrm{~cm} . \mathrm{AE}=6 \mathrm{~cm}$ の直方体である。
辺 DH ．辺 AD 上にある点をそれぞれ P, Q とし， $\mathrm{DP}=3 \mathrm{~cm}$ とする。
頂点 B と頂点 G ，頂点 B と点 Q ，頂点 C と点 P ，頂点 C と点 Q ，頂点 G と点 P ，点 P と点 Q をそれぞれ結び，GB／／PQ の場合を考える。
次の各問に答えよ。

〔問1〕次のア～オは，いずれも四角すい $\mathrm{C}-\mathrm{BGPQ}$ の展開図である。点 P と点 Q の位置がともに正しく表されているものをア～オの中から全て選べ。 ただし，四角すいC－BGPQの㑡面の 4 つの三角形には，合同な三角形はない。

1

〔問 2〕アオさん，ヤマさん，ジンさん，ミヤさんの 4 人は，四角すい $\mathrm{C}-\mathrm{BGPQ}$ の体積の求め方について話している。四角すい $\mathrm{C}-\mathrm{BGPQ}$ の体積を $V \mathrm{~cm}^{3}$ とするとき，
4 人の会話を参考にして V の値を求めよ。
ただし，答えだけでなく，答えを求める過程が分かるように，途中の式や計算など も書け。

> アオさん 「四角すいC-BGPQ の体積ってどのように求めるのかな。」

ヤマさん 「すい体の体積は $\frac{1}{3} \times($ 底面積 $) \times($ 高さ）で求めると学習したよね。」

ジンさん 「それでは，どこを底面として考えればいいかな。」

ミヤさん 「四角すいC－BGPQの体積と言っているのだから，四角形 BGPQ を底面として考えるのはどうだろう。」

アオさん 「 $\triangle B G C$ を底面として考えて，余分なところを引くことでも求められる のではないかな。」

ヤマさん 「他の面を底面としても，その考え方で求められそうだね。四角すいC－BGPQを分割して考えてみるのはどうかな。」

ジンさん 「そうか。 $\triangle C Q G$ を底面として，四角すい $C-B G P Q$ を 2 つの三角すい に分割して考えることができそうだね。」

ミヤさん 「 $\triangle B C P$ を底面として，四角すい $C-B G P Q$ を分割して考えることも できるのではないかな。」

アオさん 「いろいろな求め方があるんだね。他にもどんなものがあるのか， もっと考えてみようよ。」

〔問3〕赤，緑，青，白の 4 色を全て使って，四角すいC－BGPQの 5 つの面を全て菳る場合 を考える。色の塗り方は何通りあるか。

正答表

2			点
（10．1）	$a=$	2	7
（10an 2 ）	（1）	$(0,0),(0,2)$	8
	（2）	【途中の式や計算なと】	10

［解管例］

$\triangle \mathrm{ADC}$ と $\triangle \mathrm{ABC}$ において，辺 AC を底辺と考えると，$\triangle \mathrm{AQC}$ は共通で $\triangle \mathrm{ADQ}$ と $\triangle \mathrm{BCQ}$
 が等しくなればよい。

したがって，高きが等しくなればよいから，直綵 AC と面綵 BD が平行になればよい。直線 AC の頓きは，

$$
\frac{9-12}{3-0}=-\frac{3}{3}=-1
$$

であるから，直箖BDの切片を b とすると，直矮 BD の方程式は，$y=-x+b$

また，点 $\mathrm{B}(-3,9)$ であり，点 B は声楸 BD上の点なので

$$
9=-(-3)+b \quad \text { すなわち } b=6
$$

ゆえに，直線BDの方程式は，$y=-x+6$
点Dの x 座係を d とおくと，点 D は x 帆上 にあり，直緗BD上の点なので，

$$
\begin{aligned}
& 0=-d+6 \text { すなわち } d=6 \\
& \text { よって. } \mathrm{D}(6,0)
\end{aligned}
$$

$$
\mathrm{D}\left(\begin{array}{lll}
6 & 0
\end{array}\right)
$$

3			点
（閣1）		2	8
（閣2）	（i）	［答えの三角形】 $\mathrm{CA}=\mathrm{CB}$ の二等込三角形	10

【途中の式や計算なと】

［解客例］

位点 A を含む $\widehat{\mathrm{BQ}}$ と頂点 B を含む $\widehat{\mathrm{AP}}$ の表 きが等しいので。

$$
\angle \mathrm{BCQ}=\angle \mathrm{ACP}
$$

また，

$$
\begin{aligned}
& \angle \mathrm{BCQ}=\angle \mathrm{BCA}+\angle \mathrm{ACQ} \\
& \angle \mathrm{ACP}=\angle \mathrm{BCA}+\angle \mathrm{BCP}
\end{aligned}
$$

だあるから，

$$
\begin{equation*}
\angle \mathrm{ACQ}=\angle \mathrm{BCP} \tag{1}
\end{equation*}
$$

$\widehat{\mathrm{AQ}}$ に対する円周角は等しいので。

$$
\begin{equation*}
\angle \mathrm{ACQ}=\angle \mathrm{ABQ} \tag{2}
\end{equation*}
$$

$\widehat{\mathrm{BP}}$ に対子る円周角は茶しいので，

$$
\begin{equation*}
\angle \mathrm{BCP}=\angle \mathrm{BAP} \tag{3}
\end{equation*}
$$

したがって，（1）．（2）．（3）より，

$$
\begin{equation*}
\angle \mathrm{ABQ}=\angle \mathrm{BAP} \tag{1}
\end{equation*}
$$

ここで，絸分 AP と綵分 BQ はそれでれ $\angle \mathrm{BAC}$ と $\angle \mathrm{ABC}$ の二等分㮩であるから．

$$
\begin{align*}
& \angle \mathrm{BAC}=2 \times \angle \mathrm{BAP} \tag{5}\\
& \angle \mathrm{ABC}=2 \times \angle \mathrm{ABQ} \tag{6}
\end{align*}
$$

よって，（1）（5）．（1）より，

$$
\angle \mathrm{BAC}=\angle \mathrm{ABC}
$$

ゆえに，2つの角が等しいので，$\triangle \mathrm{ABC}$ は，

$\mathrm{CA}=\mathrm{CB}$ の二等辺三角形である。				
（周2）	${ }^{(2)}$	60	度	7

