![]() |
11 変域2 (略解) |
1 | 日本大第三高校 (R5年) ★★ | 5 | 慶應義塾高校 (R5年) ★ | |||
![]() ![]() 【解】(右図参照)下に凸の放物線 -3<a<0より,xの変域は0を含むから, 最小値 x=0のとき, b= ![]() |a+3|<|a-3|だから,最大値はx=a-3のとき, ![]() |
![]() 【解】(右図参照) 8a≦-24aより,a<0で,右下がりの直線 y=ax+bに,(8a,9)と(-24a,7)を代入して, 8a2+b=9…ア -24a2+b=7…イ アイを連立させて解くと, a=- ![]() |
|||||
2 | 東洋大京北高校 (R4年) ★★ | 6 | 近大附属高校 (R4年) ★★★ | |||
![]() ![]() 【解】(右図参照)イは右上がりの直線 アの変域は,0≦y≦8 イの変域は,-4a+b≦y≦2a+b
![]() ![]() |
![]() 【解】(右図参照)下に凸の放物線 アイともに最小値はy=0 アの最大値は,x=aのときで,y=a2 イの最大値は,x=a+6のときで,y=(a+6)2 最大値も一致するから,a2=(a+6)2 12a+36=0で, a=-3 |
|||||
3 | 國學院大久我山高校 (R4年) ★★ | 7 | 立教新座高校 (R4年) ★★★ | |||
![]() このとき,a=[ ], b=[ ]である。 【解】(右図参照)右下がりの直線 最小値はx=b+2のとき,y=a(b+2)+1=-2 ab+2a=-3…ア 最大値はx=bのとき,y=ab+1=4 ab=3…イ アイより, a=-3,b=-1 |
関数y=ax2について,xの変域が-6≦x≦3…アのとき,yの変域は0≦y≦24です。また,xの変域がb≦x≦3…イのとき,yの変域は![]() ![]() アのとき,最大値はx=-6のとき, y=(-6)2a=36a=24で, a= ![]() イのとき,最小値はx=bのとき, y= ![]() ![]() b=-2なら最小値は ![]() イのとき,最大値はx=3のときで,y= ![]() |
|||||
4 | 国学院大久我山高校 (R6年) ★★ | 8 | 大阪府立高校C (R6年) ★★ | |||
![]() 【解】(右図参照)右下がりの直線 最小値はx=bのとき,y=-3b+b=a…ア 最大値はx=-4のとき,y=-3×(-4)+b=-3a…イ アイを連立させて解くと, a=-24/5, b=12/5 |
![]() ![]() 【解】(右図参照)上に凸の放物線 最小値はx=aのとき,y=- ![]() 最大値は原点で, b=0 |