4 資料の活用
文字サイズを小にすると,A4印刷できます
 2 資料の散らばり2     月   日(  )
山口県立高校 (H26年) ★ 鹿児島県立高校 (H26年) ★
階級 (m)  度数 (人) 
A中学校  B中学校
 以上 未満
5 〜 10 

0 

1 
10 〜 15  1  7 
15 〜 20  24
20 〜 25  58
25 〜 30  31
30 〜 35 23
35 〜 40 
計  20  150 
 右の表は,A中学校の3年生男子全体とB中学校の3年生男子全体のハンドボール投げの記録の度数分布表である。ハンドボール投げの記録は,投げた距離のメートル未満を切り捨て,25m,26mなど整数の値とする。
(1) 記録が23mの生徒が投げた距離をamとするとき,aの値の範囲を,次のア〜工の中から1つ選び,記号で答えなさい。
 ア 22≦a<23
 イ 22<a≦23
 ウ 23≦a<24   エ 23<a≦24

(2) それぞれの中学校の3年生男子全体における,記録が35m以上40m未満の生徒の割合は,どちらの中学校の方が大きいか。35m以上40m未満の階級の相対度数を用いて説明しなさい。
(説明)





   
階級(分)  度数(人)
 以上 未満
0 〜 60

a 
60 〜 120  52
120 〜 180 54
180 〜 240  34
240 〜 300 b 
計  200 
 中学生を対象に平日(月〜金曜日)1日あたりのテレビやビデオ・DVDの視聴時間について,アンケ一ト調査を行った。
 右の表1は,A市のすべての中学2年生5100人の中から200人を無作為に抽出し,アンケート調査を行った結果を度数分布表に表したものである。
(1) 表1から,60分以上120分未満の階級の相対度数を求めよ。



(2) 視聴時間が120分以上180分未満である中学2年生は,A市全体ではおよそ何人いるか,表1を用いて推定せよ。ただし,十の位を四捨五入した概数で答えよ。




(3) 表1から得られた平均値が135分であるとき,[ a ] [ b ] に適当な数値を入れて度数分布表を完成させよ。


   
筑波大附属高校 (H24年) ★★★ 同志社高校 (H25年) ★
評価
得点(点) 0 10 20 30 40 50 60 70 80 90 100
人数(人) 4  2  5  ?  ?  ?  7  ?  5  4  1 
 ある集団の生徒を対象に,1問10点で10問(100点満点,)のテストを行った。 次の表のように,テストの得点に応じて評価をつけ,評価A,Bを合格,評価Cを不合格とした。?となっている欄の人数は不明である。 
 次のア,イ,ウがわかっている。
 ア
 
 評価Aの生徒の平均点は,評価Cの生徒の平均点より70点高い。
 イ
 
 合格者の平均点は65点であるが,得点が30点の生徒も合格者に含めると,合格者の平均点は63点となる。 
 ウ
 
 評価Bの中では,得点が60点の生徒の人数が最も少ない。

(1) 得点が30点の生徒の人数は[  ] 人である。


(2) この集団の生徒の総数は[  ] 人である。


 (問題は右に続く)
階級(cm) 度数(人)  相対度数 
以上 未満
145〜150 3 0.06 
150〜155 5 0.10 
155〜160  (    )
160〜165  (    ) (    )
165〜170  11  0.22 
170〜175  (    ) 0.12 
175〜180  3 0.06 
180〜185  1 0.02
合計  50  (    )
 右の表は、生徒50人について身長の分布を調べたものである。
 ( )内を埋めることにより,表を完成させよ。








       
 【筑波大附属つづき】

(3) 得点が70点の生徒の人数は[  ] 人である。





 

TOP] [BACK] [NEXT] [解答]  ★ 中  ★★ やや難  ★★★ 難